Skip to main content

SQL Connectors

Structured Query Language ("SQL") is a popular declarative language for issuing commands to database servers.

Raw SQL Operations

Generating Tables

This example will fetch https://docs.sheetjs.com/cd.xls, scan the columns of the first worksheet to determine data types, and generate 6 PostgreSQL statements.

Explanation (click to show)

The relevant generate_sql function takes a worksheet name and a table name:

// define mapping between determined types and PostgreSQL types
const PG = { "n": "float8", "s": "text", "b": "boolean" };

function generate_sql(ws, wsname) {

// generate an array of objects from the data
const aoo = XLSX.utils.sheet_to_json(ws);

// types will map column headers to types, while hdr holds headers in order
const types = {}, hdr = [];

// loop across each row object
aoo.forEach(row =>
// Object.entries returns a row of [key, value] pairs. Loop across those
Object.entries(row).forEach(([k,v]) => {

// If this is first time seeing key, mark unknown and append header array
if(!types[k]) { types[k] = "?"; hdr.push(k); }

// skip null and undefined
if(v == null) return;

// check and resolve type
switch(typeof v) {
case "string": // strings are the broadest type
types[k] = "s"; break;
case "number": // if column is not string, number is the broadest type
if(types[k] != "s") types[k] = "n"; break;
case "boolean": // only mark boolean if column is unknown or boolean
if("?b".includes(types[k])) types[k] = "b"; break;
default: types[k] = "s"; break; // default to string type
}
})
);

// The final array consists of the CREATE TABLE query and a series of INSERTs
return [
// generate CREATE TABLE query and return batch
`CREATE TABLE \`${wsname}\` (${hdr.map(h =>
// column name must be wrapped in backticks
`\`${h}\` ${PG[types[h]]}`
).join(", ")});`
].concat(aoo.map(row => { // generate INSERT query for each row
// entries will be an array of [key, value] pairs for the data in the row
const entries = Object.entries(row);
// fields will hold the column names and values will hold the values
const fields = [], values = [];
// check each key/value pair in the row
entries.forEach(([k,v]) => {
// skip null / undefined
if(v == null) return;
// column name must be wrapped in backticks
fields.push(`\`${k}\``);
// when the field type is numeric, `true` -> 1 and `false` -> 0
if(types[k] == "n") values.push(typeof v == "boolean" ? (v ? 1 : 0) : v);
// otherwise,
else values.push(`'${v.toString().replaceAll("'", "''")}'`);
})
if(fields.length) return `INSERT INTO \`${wsname}\` (${fields.join(", ")}) VALUES (${values.join(", ")})`;
})).filter(x => x); // filter out skipped rows
}
Result
Loading...
Live Editor
function SheetJSQLWriter() {
  // define mapping between determined types and PostgreSQL types
  const PG = { "n": "float8", "s": "text", "b": "boolean" };
  function generate_sql(ws, wsname) {
    const aoo = XLSX.utils.sheet_to_json(ws);
    const types = {}, hdr = [];
    // loop across each key in each column
    aoo.forEach(row => Object.entries(row).forEach(([k,v]) => {
      // set up type if header hasn't been seen
      if(!types[k]) { types[k] = "?"; hdr.push(k); }
      // check and resolve type
      switch(typeof v) {
        case "string": types[k] = "s"; break;
        case "number": if(types[k] != "s") types[k] = "n"; break;
        case "boolean": if("?b".includes(types[k])) types[k] = "b"; break;
        default: types[k] = "s"; break;
      }
    }));
    return [
      // generate CREATE TABLE query and return batch
      `CREATE TABLE \`${wsname}\` (${hdr.map(h => `\`${h}\` ${PG[types[h]]}`).join(", ")});`
    ].concat(aoo.map(row => {
      const entries = Object.entries(row);
      const fields = [], values = [];
      entries.forEach(([k,v]) => {
        if(v == null) return;
        fields.push(`\`${k}\``);
        if(types[k] == "n") values.push(typeof v == "boolean" ? (v ? 1 : 0) : v);
        else values.push(`'${v.toString().replaceAll("'", "''")}'`);
      })
      if(fields.length) return `INSERT INTO \`${wsname}\` (${fields.join(", ")}) VALUES (${values.join(", ")})`;
    })).filter(x => x).slice(0, 6);
  }
  const [url, setUrl] = React.useState("https://docs.sheetjs.com/cd.xls");
  const set_url = (evt) => setUrl(evt.target.value);
  const [out, setOut] = React.useState("");
  const xport = React.useCallback(async() => {
    const ab = await (await fetch(url)).arrayBuffer();
    const wb = XLSX.read(ab), wsname = wb.SheetNames[0];
    setOut(generate_sql(wb.Sheets[wsname], wsname).join("\n"));
  });

  return ( <> {out && ( <><a href={url}>{url}</a><pre>{out}</pre></> )}
    <b>URL: </b><input type="text" value={url} onChange={set_url} size="50"/>
    <br/><button onClick={xport}><b>Fetch!</b></button>
  </> );
}

Databases

Query Builders

Query builders are designed to simplify query generation and normalize field types and other database minutiae.

Knex

The exposition has been moved to a separate page.

Other SQL Databases

The generate_sql function from "Generating Tables" can be adapted to generate SQL statements for a variety of databases, including:

PostgreSQL

The exposition has been moved to a separate page.

MySQL / MariaDB

The exposition has been moved to a separate page.